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A B S T R A C T

Environmental pollution is generally a by-product of various human activities. Researchers have studied the
dangers and harmful effects of pollutants and environmental pollution for centuries, and many necessary steps
have been taken. Modern solutions are being constantly developed to tackle these issues efficiently. Visual
pollution analysis and detection is a relatively less studied subject, even though it significantly impacts our
daily lives. Building automatic pollution or pollutants detection systems has become increasingly popular due
to the modern development of advanced artificial intelligence systems. Although some advances have been
made, automated pollution detection is not well-researched or fully understood. This study demonstrates how
various object detection models could identify such environmental pollutants and how end-to-end applications
can analyze the findings. We trained our dataset on three popular object detection models, YOLOv5, Faster
R-CNN (Region-based Convolutional Neural Network), and EfficientDet, and compared their performances.
The best Mean Average Precision (mAP) score of 0.85 was achieved by the You Only Look Once (YOLOv5)
model using its inbuilt augmentation techniques. Then we built a minimal Android application, using which
volunteers or authorities could capture and send images along with their Global Positioning System (GPS)
coordinates that might contain visual pollutants. These images and coordinates are stored in the cloud and
later used by our local server. The local server utilizes the best-trained visual pollution detection model. It
generates heat maps of particular locations, visualizing the condition of visual pollution based on the data
stored in the cloud. Along with the heat map, our analysis system provides visual analytics like bar charts and
pie charts to summarize a region’s condition. In addition, we used Active Learning and Incremental Learning
methods to utilize the newly collected dataset by building a semi-autonomous annotation and model upgrading
system. This also addresses the data scarcity problem associated with further research on visual pollution.
. Introduction

Introducing toxins into a natural environment that reduces its suit-
bility for human habitation is called pollution. Fundamentally, we
ll need to be aware of the concept of the environment because all
iving creatures depend on it to survive, making it challenging to
gnore without taking care of it. Although the environment can persist
n its natural state, human interference has severely damaged many
cosystems. These activities have caused a significant pollution issue,
hich has disturbed the planet’s atmosphere [1–3]. The indoor and
utdoor environments are affected by pollution, which has long been
public concern. Several different kinds of pollution have been iden-

ified. Other than the most well-known types of pollution, such as
ir, land, and water pollution, the science of environmental pollution
ists a number of others that have a marginal but important impact
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on us. Such pollution is visual pollution, which affects how we see
our surroundings. Our first impression of a society is formed by its
appearance, frequently a patchwork of man-made buildings and nat-
ural structures. All irregular structures that are unappealing and out
of context prevent people from enjoying their surroundings. Visual
pollution is defined as all the unsightly objects that are out of context
to their surroundings and ruin the aesthetic quality of the surrounding
landscape, which causes harm to human vision and health [4]. Visual
pollution can be caused by anything that obscures gorgeous sights.
Garbage thrown in various locations, cables or wires hanging over
streets, dumped construction materials in urban areas, ill-arranged and
bright billboards, old decaying objects, utility poles, and so on [5,6].
This is a problem that is associated especially in the urban areas, which
lower the quality of life and may cause health issues ranging from
health disorders to emotional distress.
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Visual blight and visual congestion are two phrases that come up
frequently in this context. Billboards, power wires, and unsightly struc-
tures are examples of visual blight. Visible congestion can be found in
everyday life, such as a cluttered workstation or a congested roadway.
It may hinder a person’s ability to locate particular objects in such
situations and someone we are attempting to meet on the street. One
of the causes of visual congestion can be attributed to administrative
neglect. Without proper rules and regulations set by the governments,
advertising companies showcase their advertisements in almost every
corner of public places without considering the effects it may have on
the people [7]. These commercials overcrowd the areas with unkempt,
crooked, and uneven objects like billboards and pamphlets, destroying
the surrounding environment to the point when it is difficult to identify
the place. Although commercials are meant to enlighten consumers
about a variety of things that may benefit them in their daily lives,
the moment that they start to proliferate in our everyday environments
is when they start to pose a problem [6]. Visual pollution caused
by disorderly, damaged, uneven, and massive promotions can have
far-reaching and widespread implications. Distraction, loss of identity,
traffic congestion, various forms of health concerns, annoyance and
psychological illnesses, eye strain, loss of feeling of sanitation and aes-
thetics, loss of politeness, and general loss of the resident community’s
quality of life are among them [8,9]. Visual pollution degrades the
natural view, and as a result, urban areas around the city lose their
uniqueness as a location. Visually calming environments, such as vast
fields, stunning landscapes, forests, hills, greenery, and so on, help re-
energize us, relieve our pains, and restore our productivity. According
to [10], our stress levels may be influenced by our surroundings,
which can affect our bodies. Our neurological, endocrine, and immune
systems’ functioning are all affected by what we are seeing, hearing,
and experiencing at any moment. Unpleasing environments can give
rise to an anxious feeling, which may increase our blood pressure and
heart rate. A pleasing environment reverses that. Hence it is crucial that
we preserve the natural balance within our environment.

Environmental pollution is not a new phenomenon, yet it continues
to be the biggest threat to mankind and one of the key factors contribut-
ing to human life. Urbanization, industrialization, mining, and explo-
ration are some human activities contributing to global environmental
contamination. Together, developed and developing countries bear
this responsibility. Although developed countries have made a greater
contribution to environmental protection due to increased knowledge
and tighter legislation, there are still issues yet to be addressed regard-
ing environmental pollution in third-world countries like Bangladesh,
India, and Pakistan. Despite the increased awareness of pollution world-
wide, its negative long-term effects are still being noticed. The areas of
air pollution, water pollution, and soil contamination have received a
lot of attention and have been the center of study for numerous kinds
of research [11–14]. Moreover, new techniques involving the usage of
Artificial Intelligence to conduct research have emerged in the 21st
century [15–18]. Deep Learning is one of the disciplines of Artificial
Intelligence or AI that receives the most attention. Deep Learning es-
sentially extracts high-level information from data and makes decisions
based on the data, which can be easily interpreted by humans.

Although visual pollution is a serious issue, very few efforts have
been done on the subject that makes use of cutting-edge AI methods.
AI-based systems can offer solutions to effectively address the problems
caused by visual pollutants because the idea of visual pollution is not
fully understood by the general public. To find the things that produce
visual pollution, deep learning-based approaches like object detection
and image classification can be used. These models can then be used to
create automated systems that assist the authorities in monitoring and
taking the appropriate action to safeguard the environment from such
contaminants. Even though the definition of visual pollution remains
the same, the objects that cause visual pollution can vary from place
to place. Furthermore, they frequently go unnoticed despite being in
plain view. Therefore, in order to address these kinds of environmental
2

concerns, automated systems based on AI are required. Additionally,
little research exists regarding the proper design and upkeep of these
automated systems for the management of waste or pollution. As the
types of pollutants might change over time, developing systems that
can automatically identify and provide insights on pollution control
can be quite difficult. Although there have been some works performed
on visual pollution classification and detection, it has not yet been
suggested how to use the models to create a system to analyze the
pollution [19,20]. It is also little understood how these kinds of data
might be gathered, handled, and ultimately used for developing the
systems. Additionally, it is crucial to comprehend how the recently
trained models might be used for pollution analysis. Therefore, research
into creating automated systems using machine learning and deep
learning approaches that can quickly adapt to the increasing need for
pollution management is required.

In our work, we utilized modern computational algorithms like
deep learning to solve an important concern of environmental pollution
which is visual pollution. As this sub-field of environmental pollution
lacks works that utilize modern computational techniques, we directly
jump into how object detection algorithms can be used to automatically
detect visual pollutants and how such kind of automated systems can
be utilized to enhance the quality of the environment that we all
live in. We did a comprehensive study of visual pollution detection
using three popular object detection algorithms and built an end-to-end
application to demonstrate the usability of such a system. The system
also includes a crowd source-based data collection system through an
Android application using the cloud. The system can run analyses on
the collected dataset with the help of the trained model and display a
heat map of visual pollutants on the map along with other information
that summarizes the overall condition of a given region. We have
also employed Active and Incremental learning to upgrade the model
efficiently with the help of the newly collected dataset over the time.
These two machine learning methods plays important roles for devel-
oping modern deep learning-based systems as such systems require
continuous development and deployment and human supervision is not
always possible.

Our main contributions are summarized as follows:

• We experimented with the three most popular object detection
models, namely, YOLOv5, Faster R-CNN, and EfficientDet, and
performed a comparative analysis of their performance in visual
pollution detection.

• We developed an end-to-end system, where we deployed our best-
trained model to experiment with the usability of such a system
in a real-world use case.

• We developed an Android application using which users could
capture and upload images containing visual pollutants along
with their locations that generate new datasets.

• We utilized the collected dataset to visualize and analyze the
impact of visual pollution in a geospatial manner with the help
of our model and heat map.

• We also used Active and Incremental Learning methods to man-
age and upgrade both the dataset and the model in the system
efficiently.

2. Related works

With the rapid advancement of deep learning, researchers are fo-
cusing their efforts on finding ways for applying deep learning to
real-world situations. Solving problems related to environmental man-
agement has also been the primary focus of many studies. The authors
of [21] highlighted the use of artificial intelligence in environmental
sustainability, artificial intelligence in the reduction of air and water
pollution, and potential artificial intelligence-based techniques in vari-
ous industrial sectors. A similar research paper [22] evaluated different
techniques for handling environmental challenges in pollution. The
authors emphasized the characteristics, advantages, and limitations of
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single AI and hybrid AI techniques in areas of environmental pollution
such as water pollution.

In their work [23], presented a deep learning-based approach to
smart waste management. They used the YOLOv3 algorithm, which was
trained to detect 6 different classes of trash objects. Waste segregation
can be aided by models like this, which can assist in efficiently recycling
and disposing of waste materials. To forecast groundwater arsenic
contamination, [17] used a machine learning-based technique. This
study was carried out in India, and the researchers used machine
learning techniques to map out the areas with the highest levels of
groundwater contamination due to arsenic. Their prediction map re-
veals which areas should get priority attention from policymakers for
future testing campaigns and preventive initiatives. In [16], the author
used a deep learning network to predict river pollution under the
impact of rainfall-runoff. In their study, they identified the dry period as
the most significant factor affecting river pollution, followed by average
rainfall intensity, maximum rainfall in 10 min, the total amount of
rainfall, and initial runoff intensity. Based on the relationships between
rainfall characteristics and event mean concentration, they used an
artificial neural network to predict the event mean concentration of
Chemical oxygen demand in the river. In a paper, [24], proposed an
object detection model named AquaVision for detecting and catego-
rizing various pollutants and hazardous waste floating in the waters.
The proposed method could locate waste objects, which assists in the
cleaning of surface waters and contributes to environmental protection
by preserving the aquatic habitat. A. Nazerdeylami et al. used a Deep
Neural Network (DNN) model to identify objects in seaside areas in
their study [25]. This model was used to detect man-made pollutants
and hazardous objects. The seaside scenes were semantically labeled
using a pre-trained VGG architecture and for object detection, the
Single Shot Detector (SSD) approach was used. An aggregated LSTM
(ALSTM) based on a well-liked deep learning technique LSTM was
proposed by the authors in [18]. They have incorporated neighborhood
air quality monitoring stations, stations in close proximity to industrial
regions, and stations for outside pollution sources in this new proposed
methodology. Their findings demonstrated that the suggested approach
might be utilized successfully for forecasting air pollution. A similar
research paper [26], introduced a deep-learning solution for predicting
the air quality index of the city of Chennai. The AQI values were clas-
sified using a deep learning model based on a combination of Support
Vector Regression (SVR) and Long Short-Term Memory (LSTM). This
study demonstrated how deep learning might raise public awareness
about air pollution and assist officials in taking the required steps to
improve air quality. Another study [27], utilized deep learning to detect
pollution caused by vehicles. The image recognition model Inception-v3
was used in this study.

The idea of the significance of visual quality in the built environ-
ment was covered in depth by Portella in her book [6]. The researchers’
representation of the detrimental effects that commercial signage may
have on urban areas’ aesthetic appeal and, moreover, on people’s
quality of life, was done from the perspectives of architecture, urban
planning, and psychology. Visual pollution is a subjective issue, making
its identification and assessment more difficult than other types of
pollution recognized. The manual assessment and quantification of
visual pollution utilizing color images, public surveys, and geospatial
technology have all been studied. To solve the problem of measuring
visual pollution, the authors of [28] have used a traditional cumu-
lative area approach. The authors used a picture booklet survey to
collect responses from people in an architectural urban zone of Kuala
Lumpur, Malaysia. The results are based on the respondents’ greater
tolerance levels, which helped identify the visual contaminants when
combined with demographic factors including gender, education level,
and home location. Another research, [29] attempted to look at the
environmental issues, particularly the visual pollution brought on by
billboards and advertisements, as well as its potential remedies in the
Serbian historical city of Ni. The goal of the study was to identify the
3

complexity, challenges, and significant ramifications of aesthetically
offensive things. The article used an inductive method to assess this
kind of pollution, based on a survey of urban residents’ perceptions of
visual pollution.

Researchers in the field of deep learning have just lately been
interested in visual pollution. The majority of studies used publicly
available information to identify and classify visual pollution. The
authors of the research [19] introduced a deep learning model for
categorizing visual contaminants. This study looked at four different
types of visual pollution, and they gathered their data using the Google
image search engine. The total number of photos in their final dataset
was 800. As a deep learning model, the study suggested a Convo-
lutional Neural Network (CNN) architecture. Finally, they were able
to attain a 95 percent training accuracy and an 85 percent testing
accuracy for visual pollution categorization. Similar work was done
in the study [30] where deep learning networks were used to clas-
sify textile visual pollutants. The data was originally gathered by
the authors through search engine crawling, as well as local clothing
factories, roadside sellers, and shopping centers. After annotation, the
authors experimented with different deep learning networks, YOLOv5,
EfficientDet, and Faster R-CNN. Through their experiments, they have
concluded EfficientDet as being the best model achieving the highest
accuracy for their case of study. The authors of the research [20]
introduced the usage of deep-learning techniques for detecting visual
contaminants from natural scenarios. They gathered their data using
the image from Google Street View. They were able to accumulate a
total of 1400 images through their method of data collection. Using
a deep learning approach based on YOLOv5, the authors identified
six distinct visual pollutants in Dhaka, Bangladesh. A computer vision
annotation tool called CVAT was used to manually annotate 1400
photos that the author had manually collected. The final mAP score
achieved by the authors was 0.80. Compared to this work, our work
proposes a visual pollution analysis and detection system through a
comprehensive study of multiple object detection models. Instead of
trying out a single model, our work performs a comparative analysis
of visual pollution detection on multiple models and then utilizes the
best performed model to develop a system that can provide analyses
on visual pollution. Also, our proposed work demonstrates how these
type of data can be collected and utilized efficiently using modern deep
learning based methods and proper software design.

So far it has also been noticed that there is a lack of datasets
that can help researchers to research and develop more sophisticated
systems regarding visual pollution. In all the works related to visual
pollution with deep learning, the authors had to manually collect and
label or annotate their dataset which makes the whole process much
more difficult for the researchers. In our work, we also proposed a
system that uses a crowdsource-based approach to collect and continu-
ously utilize the collected dataset for real-world applications of visual
pollution detection. For this, an Android application was developed
through which a small to a large group of people can submit images
that might contain visual pollutants. These data are efficiently stored in
the cloud and then utilized by the trained detection models. The models
are deployed in the system in a way that they are used for multiple
purposes at the same time. First, they are used to run inferences on
the incoming datasets and provide analyses on given geo-locations.
Second, their confidence scores are utilized to generate a new larger
dataset for further development of the system. The model utilizes the
concept of Active Learning to label and store new data that they are
confident about and leaves the other data that might require some
human intervention. Later these newly generated datasets are used to
retrain the existing model using another technique called Incremental
Learning. This method aids the model’s ability to learn new data
while maintaining its memory of previously learned data. The proposed
system is not only limited to visual pollution management but also any
kind of pollution and waste management that can be detected from
images.
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Fig. 1. Samples from each class presented in our dataset. The dataset represents 6 different kinds of visual pollutants that can be seen around the roads in Dhaka city.
Fig. 2. Per class distribution of the dataset we used for our experiments. The class ‘Street Litters’ and ‘Construction Materials’ contain 300 images per class while the others
contain 200 images each.
3. Methodology

3.1. Dataset

We did not have access to a dataset suitable for detecting visual
pollution. As a result, we extended the utilization of the same dataset
used in the study [20]. The dataset was created by collecting screen-
shots from Google Street View around various locations in Dhaka city.
Fig. 1 illustrates some of the sample images from the dataset. The
4

authors manually pre-processed and annotated this dataset. The dataset
is divided into six categories of common visual pollutants: ‘‘Billboards’’,
‘‘Street Litters’’, ‘‘Construction Materials’’, ‘‘Bricks’’, ‘‘Wires’’, and ‘‘Tow-
ers’’. In total, there are 1400 photos in the dataset. The per-class image
distribution of the images in the dataset is shown in Fig. 2. All these
images were first resized into 500 × 500 pixels and later annotated
using the CVAT annotation tool. To annotate the images, the authors
used the rectangular bounding box technique. Because this dataset was
designed primarily for object detection, several of the images featured
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Fig. 3. Architecture of Faster R-CNN.
multiple visual pollutant types in a single image. In such cases, different
bounding boxes were created to annotate each visual pollutant object
present in the image. These annotations were then converted to a
format required by the respective models.

3.2. Models

3.2.1. Faster R-CNN
Faster R-CNN is a widely used region-based neural network for

object detection. It has derived from the Fast R-CNN, which is derived
from another model called R-CNN. R-CNN or Region-based Convolu-
tional Neural Networks are a family of neural networks which mainly
work by proposing regions of objects in a given image using an algo-
rithm called selective search. Selective search helps the model extract
the region of interest where the objects can be in a picture. Region
of interest can be thought of as drawing boxes around the regions,
also known as bounding boxes. The first R-CNN model was introduced
by [31], and it used selective search as a combination of exhaustive
search on color-segmented parts of the image. Initially, the algorithm
generates small regions of interest. Eventually, a greedy algorithm
combining sections of a similar color increases the size of the regions.

The similarity between the regions can be calculated by: 𝑺(𝒂, 𝒃) =
𝑺𝒕𝒆𝒙𝒕𝒖𝒓𝒆(𝒂, 𝒃)+𝑺𝒔𝒊𝒛𝒆(𝒂, 𝒃), where the 𝑺𝒕𝒆𝒙𝒕𝒖𝒓𝒆(𝒂, 𝒃) is visual similarity
nd 𝑺𝒔𝒊𝒛𝒆(𝒂, 𝒃) is similarity between the regions. Later the extracted
egions are passed into a CNN to extract the features from the image
atches. As a CNN model expects a fixed size of the input, the region
atches are resized into a fixed size first, also known as warping. CNN
eature extractor extracts the features from an image by identifying
hapes, structures, textures, etc from the given input, and these are
lso known as feature maps. Later these feature maps are sent to a
upport Vector Machine (SVM) classifier which finally classifies the
bject. But this entire process was slow, and the model was not end-
o-end trainable. To improve the existing model, Fast R-CNN arrived,
5

which promised better performance and speed compared to the first
R-CNN model [32]. Instead of extracting CNN features from all the
selected regions of interest, Fast R-CNN proposed generating the feature
map of the entire image using a CNN feature extractor at the very
beginning of the model. This entire feature map is then fed into a
Region of Interest or ROI pooling layer, which generates regions of
interest from the image. These pooled features are then sent to two
sections, one which classifies the object inside the pooled region and
one which corrects the bounding box coordinates using a regression
algorithm. Even though Fast R-CNN was faster and more efficient than
R-CNN, it was still not end-to-end trainable. Faster R-CNN arrives with
a novel region proposal method which gives it advantages over the
other models [33]. Faster R-CNN uses a Region Proposal Network or
RPN, a CNN for generating regional proposals. Like Fast R-CNN, Faster
R-CNN has a CNN feature extractor that first generates feature maps
from a given image. These CNN feature extractors are already pre-
trained for extracting features like shape, structures, textures, colors,
etc., from images. After extracting the features from the first CNN, the
feature map is given to the RPN as input which outputs the region
proposals for the ROI layer. Later, the ROI layer sends the outputs to
the classifier and the bounding box regressor, just like in Fast R-CNN.
In contrast to earlier models, which relied on selective search to create
regions of interest, Faster R-CNN employs a brand-new technique called
the region proposal network, enabling it to detect objects from images
more accurately while using less processing power. Fig. 3 represents a
high-level diagram of the Faster R-CNN architecture.

Our research utilizes a Faster R-CNN model with a Resnet101 CNN
as its feature extractor. The feature extractor is already pre-trained on
the ImageNet dataset [34], hence good at detecting useful features from
an image. ResNet is a popular CNN model introduced by [35], and
since then, it has been used in various applications. The ResNet CNN
architecture was mainly introduced from the notion that if we make a
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model denser, the better accuracy we will get but as we make a model
denser, the images become smaller due to the various convolutional
operations. To tackle this issue, Resnet arrived with residual blocks
with bottleneck layers that perform connection skipping and maintain a
learnable image size throughout the flow of the dense model, resulting
in better performance.

3.2.2. YOLO
‘‘You Only Look Once’’ or YOLO is another widely used object detec-

tion model which is very popular for its speed and performance [36].
Unlike other object detection models like Fast R-CNN or Faster R-CNN,
YOLO handles the entire task in a single CNN model and handles the
problem of object detection like a regression problem. YOLO is an end-
to-end model that looks at the entire input image and outputs vectors
that represent the position of bounding boxes, confidence scores of
the objects inside the bounding boxes, and class probabilities of the
objects. First, each image is divided into 𝑺×𝑺 grid cells, and B number
f bounding boxes is calculated for each grid. Each box outputs five
alues, x, y , w and h, along with the confidence score of the object.
on-max suppression is used to eliminate overlapping bounding boxes.
inally, the results are merged, and final bounding box coordinates are
chieved from x, y , w, and h where x and y guide about the center of a
ounding box in an image and w and h represent the width and height
f that bounding box over an image. The YOLOv5 model’s architecture
s displayed in Fig. 4. The class probability provides the classifier
esult for the object inside the bounding box, and the confidence score
rovides the confidence level of the model for the bounded object.
OLO is mainly used in cases where speed is an important metric to
onsider along with accuracy. Another benefit of YOLO could be YOLO
ims to develop a more generalized object detection model.

Since its arrival, various improvements have been made to the
xisting model, and newer models like YOLO v2, v3, v4, and finally,
OLOv5 have emerged. YOLOv5 is the most accurate and efficient
odel among these, developed by Ultralytics, and the entire repository

s published on GitHub github.com/ultralytics/yolov5 [37]. YOLOv5
rchives much higher accuracy in a faster time in comparison to other
OLO models. Also, YOLOv5 comes with various default augmenta-
ion features that help the model learn better. Augmentation is an
versampling technique that does various processing on an image to
enerate a slightly modified version of the image, which results in
ore training data for the model and as a result, the model learns a

ore generalized representation of the data. Among the augmentation c

6

echniques, YOLOv5 uses a method called mosaic augmentation. It
ombines four images into four tiles to generate training data and
elps the model learn to detect significantly smaller objects. There are
everal variations of YOLOv5 like small, medium, large, etc. And each
as different performance results. For example, a small variation will
eed the lowest time to train but the large model will provide the best
ccuracy.

.2.3. EfficientDet
EfficientDet is a popular object detection model introduced by

oogle [38]. It uses a Bi-directional Feature Pyramid Network, BiFPN,
nd a compound scaling algorithm to generate accurate detection re-
ults. The model uses different versions of the EfficientNet models as
he CNN backbone. EfficientNet is a famous CNN model architecture
hat Google introduced to support scalable CNN architectures [39]. The
dea of EfficientNet arose from how researchers can find the proper
ombination of input data resolution along with the model’s density
nd channel width to achieve the best output. EfficientNet introduced
scaling method that can uniformly scale resolution, model depth, and

hannel width using a compound coefficient, resulting in a balanced
etwork design for optimal outputs. In EfficientDet, the compound scal-
ng algorithm simultaneously scales the resolution, depth, and width of
ll the backbones, feature networks, and box/class prediction networks.
he architecture is made up of three main parts. The backbone network

s the initial part. The EfficientNet family serves as the foundation. A
aseline model is produced by employing a neural architectural search
EfficientNet-B0). This base model’s width, depth, and resolution can be
ncreased using a scaling factor to match the target device’s capabilities.
he second essential component is the BiFPN. A weighted bi-directional
eature pyramid network is known as BiFPN. It is a novel approach.
xclusive to the EfficientDet architecture, BiFPN was developed. Using
ulti-scale processing, it presents a set of learnable weights to fuse

he information extracted from the input image. Compound scaling
s the third major component. The network’s dimensions are scaled
sing a compound coefficient 𝛷, which helps to properly scale the
omplete CNN design to the intended processing capability. Compound
caling was discovered to use the extra memory and processing power
fficiently. There can be 8 different variations of EfficientDet models
EfficientDet-D0 to EfficientNet-D7) which change according to the
ompound coefficient 𝛷. Each model variant uses its corresponding
ackbone EfficientNet models (EfficientNet-B0 to EfficientNet-B6) ex-

ept the EfficientDet-D7, which requires EfficientNet-B6. The higher

http://github.com/ultralytics/yolov5
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Fig. 5. Architecture of EfficientDet model.
Fig. 6. Before and after applying non-max suppression on a given image.
he compound coefficient value, the more layers, and channels in the
iFPN layer and box/class layers are presented. The architecture of
he EfficientDet model is shown in Fig. 5. In our work, we have only
sed EfficientDet-D0 as its default input size is 512 × 512 sized images,
xpanding which might create artifacts in our dataset images and cause
alse results.

.2.4. Non-max suppression
A model conducts classification and localization simultaneously in

bject detection tasks. The model can generate numerous bounding
oxes of varying dimensions to localize an object in an image. However,
e should expect a single bounding box for each object with the highest
robability score. In this scenario, the object detection model employs
on-max suppression strategies to eliminate all but the best bounding
oxes. Fig. 6 demonstrates the application of non-max suppression
n an image and its bounding boxes. The bounding box’s confidence
core and the value of Intersection Over Union (IOU) of the bounding
oxes are used to accomplish this. The overlap between bounding
oxes is measured using the IOU metric, calculated by comparing
he bounding boxes’ ground truth label and anticipated coordinates.
enerally, a score of 0.5 is considered the IOU threshold value, which
elps eliminate unnecessary bounding boxes from an image.

.2.5. Precision and recall
Precision and Recall are two common evaluation metrics. They

re used together to assess models. Precision is the percentage of
7

correctly anticipated positive outcomes out of all positive predictions
(Eq. (1)). Whereas recall refers to the portion of positive labels that
were correctly identified as such out of all the positive labels (Eq. (2)).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(1)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(2)

3.2.6. F1 score
The F1 score measures a model’s ability to identify positive exam-

ples while avoiding false positives correctly. It is viewed as a harmonic
mean of precision and recall. The F1 score has a range between 0 and
1, where 1 is the best score, and 0 is the worst score. F1 score is
determined using Eq. (3).

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(3)

3.2.7. Intersection over union
IOU or Intersection over Union is an evaluation metric used to

calculate the precision and recall of an object detection system. It is the
proportion of the ground truth labels and the prediction label’s areas of
union and overlap. The Equation is illustrated in Fig. 7. In particular,
the metric is used to determine if a prediction is true positive or false
positive. A precision and recall plot is generated for a single classifier at
various IOU thresholds following the calculation of precision and recall
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Fig. 7. Intersection over the union.

or different IOU thresholds. The precision–recall curve is then used to
alculate the average precision.

.2.8. Mean average precision
The general metrics used to classify images cannot be applied in an

bject detection system, as each image may contain multiple objects
f different classes. Here, a model’s both localization and classification
eed to be assessed. mAP or Mean Average Precision is determined by
aking the mean of the average precision (AP) across all classes. The
verage precision summarizes the precision–recall curve into a single
alue representing the average of all precision. AP is determined using
q. (4). Here, n represents the number of thresholds. The difference
etween the current and subsequent recalls is determined for each
recision–recall and multiplied by the current precision. The mAP
s calculated by taking the mean of the AP for all classes. Eq. (5)
epicts the equation to calculate mAP. Here, 𝐴𝑃𝑘 represents the average
recision of class k and n represents the number of classes. Different IoU
hresholds are used to evaluate the object detection models. Depending
n the threshold, each prediction may differ from the others.

𝑃 =
𝑘=𝑛−1
∑

𝑘=0
[𝑅𝑒𝑐𝑎𝑙𝑙𝑠(𝑘) − 𝑅𝑒𝑐𝑎𝑙𝑙𝑠(𝑘 + 1)] ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘) (4)

𝑚𝐴𝑃 = 1
𝑛

𝑘=1
∑

𝑘=𝑛
𝐴𝑃𝑘 (5)

3.3. Transfer learning

Transfer learning is a popular and effective method for training
large deep learning and machine learning models. Training a model
necessitates a large number of computational resources and can be
costly to the hardware. This problem, however, can be handled by
utilizing transfer learning. In transfer learning, a model is utilized that
has been previously trained to do similar tasks using a different or sim-
ilar dataset. The pre-trained model’s layers and learnable parameters
are already initialized with proper weights. During transfer learning,
certain layers, the last few layers are generally dropped and retrained
to teach the model to detect newer classes. In this work, we employed
Faster R-CNN, EfficientDet, and YOLOv5 models pre-trained on the
MS COCO [40] dataset. Common Objects in Context, COCO is a large
annotated dataset that contains 1.5 million object instances in 330k
images of 80 distinct object classes such as people, cars, cats, airplanes,
household objects, etc. The models are already good at recognizing
diverse things from an image because they were pre-trained on the
COCO dataset, and using transfer learning, we taught the models to
detect certain classes of objects that we have defined in our dataset as
visual pollutants.

3.4. Application

To demonstrate the usefulness of visual pollution detection, we
have developed a heatmap generation system that combines a mobile
application with a trained model. The system is divided into two parts,
the mobile application, and the local server.
8

3.4.1. Android application
Android is the most popular mobile platform in the world. Due to

the modern development of smartphones, Android-based smartphones
have become the most popular medium of computation. In our work,
we have developed a simple application that can be used to collect data
from the real world and send it to cloud storage with minimal effort.
The application is developed using Flutter, a popular cross-platform
development framework. The only function of this application is to let
a person capture images through their smartphone and send them to
the cloud server along with their GPS coordinates. Upon launching the
application for the first time, the application will ask for the user’s
permission to use the camera, local storage, and GPS sensor. The
application uses the device’s default camera API to capture the image,
hence the user can select any of his preferred lenses or settings to
capture a picture. The GPS coordinates are collected from the device’s
GPS sensor using Fused Location Provider API. The image is uploaded
to the cloud server as the user captures and taps the ‘‘Upload’’ button.
We have used Firebase as our cloud backend which is very popular for
these types of applications. As a user uploads an image, the image is
first stored in Firebase’s cloud storage and then the image link along
with the user’s latitude and longitude is stored in Firebase’s Real Time
database. Fig. 8 displays the data collection method using the Android
application.

3.4.2. Local server and heatmap
While the Android application is used for collecting the field data,

the local server is used for utilizing the collected data with the help
of the trained model to generate the desired application outputs. The
local server or the local machine is used for downloading and utilizing
the collected data. A Python script-based minimal application is used
for fetching the data from the Firebase Real-Time Database to the local
machine. As all the data is fetched from the database, a Dataframe is
generated which maps each image path with its corresponding latitude
and longitude values. Then the collected image paths are sent to the
previously trained model which is already good at detecting the visual
pollutants from the images. All the images are continuously inferred
by the model and the model returns if the given image contains visual
pollutants or not. If any image contains visual pollutants then the
type of pollutant is also returned by the model. Upon receiving the
model’s prediction, the information is then again saved in the CSV
(comma-separated values) file. So after passing all the images through
the model, the newly generated CSV file contains not only the GPS
coordinates of each image but also the information on available visual
pollutants in that image. This specific functionality is simply achieved
by converting the CSV file into a Pandas Dataframe. The converted
Dataframe can be treated as a data table and rows or columns can
be added depending on the necessity of the task. During the model
inference process (where we pass each image into the model) the
program adds 7 new columns to the data frame to define each class of
pollutant along with the total pollutant count. If an image contains a
certain pollutant, the corresponding field in that particular row will get
the value of 1, otherwise, all the fields are set as 0. The total pollutant
count field is used to store how many different types of pollutants
are present in the image and this particular field is important for the
heatmap generation process. As the inference process finishes, the data
frame is then saved as a CSV file. For heatmap generation, we have used
a library called Folium. Folium uses Leaflet js to visualize the Python-
processed data on a map. The heatmap generation program loads the
CSV file as a data frame and plots the heatmaps on the map. The data
frame already contains location coordinates along with the intensity
value of available visual pollution in that location. The intensity value
is previously detected by the trained visual pollution detection model.

A high-level view of the data analytics pipeline is shown in Fig. 9.
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Fig. 8. Flow of data between Android device, cloud storage, and the database.
Fig. 9. A high-level view of the data analytics pipeline.
.4.3. Continuous data generation and retraining
As the users collect and submit data to the cloud database, new data

s generated on a frequent basis. Besides running analytics on the col-
ected data, we designed a system to utilize the continuous flow of data
o enhance the quality of the entire system. We applied two machine
earning concepts called Active Learning and Incremental Learning to
esign the proposed concept (Fig. 10). The concept of Active Learning
rises as data labeling is a tedious process. In Active Learning, the
odel is trained on a small portion of the labeled dataset, and then
ew data is labeled with the help of the model’s inference [41,42]. In
ur system, the downloaded data is inferred with the help of the visual
ollution detection model at first. If the model is confident about all
he objects found on a given image, the image and its annotation are
tored in the local database along with the previous dataset. On the
ther hand, if the model finds low confidence in any detected pollutant,
he data is then sent to a human annotator for fixing the annotation.
he human annotator gets to fix the annotation and submit the image
long with its fixed annotation into the local database. In both cases,
he newly arrived data are inferred by the model and depending on the
odel’s confidence, the data is fixed and merged with the previously
9

stored dataset. The minimum confidence required to pass the data is
set to 60% in our system, so if any image contains any object where
the recognition confidence is less than 60%, the data is re-validated
with the help of a human annotator. Otherwise, it is directly sent to
the database for retraining the model.

To retrain the model, we applied another concept called Incremental
Learning. Incremental Learning is a set of strategies applied for re-
training a model in periodic intervals to improve the overall system
maintaining the previously learned knowledge [43,44]. As our system
gets new data on the flow of its operation, we need to retrain the model
to utilize the newly collected and annotated data. In some way, this
can now be compared to the previously mentioned transfer learning
strategy. Incremental Learning facilitates training models with updated
versions of datasets and changes the model’s architecture to adapt new
classes if needed. But as we are using an Active Learning method in
labeling the newly arrived data, we kept the model’s architecture the
same for this study. As our model is already trained on 6 different
classes of visual pollutants, we do not need to retrain the model from
the ground. The model is already good at detecting the classes we are
about to train it on. For that, we only need to train the model for a
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Fig. 10. A representation of the developed system with respect to the implementation of Active Learning and Incremental Learning. Active Learning is used in the semi-autonomous
data annotation system where newly added data are inferred by the model and then depending on the confidence score re-checked by an admin. The Incremental Learning part
is associated with the re-training of the model depending on the newly merged dataset on certain intervals.
Table 1
Performance of the trained models in mAP, Precision, Recall and F1-score metrics.
YOLOv5 takes the advantage of the inbuilt augmentation methods and outperforms the
others.

Model mAP Precision Recall F1-Score

YOLOv5 0.80 0.813 0.748 0.78
YOLOv5 with augmentation 0.85 0.883 0.807 0.84
Faster R-CNN 0.78 0.866 0.704 0.77
EfficientDet 0.77 0.840 0.699 0.76

very short amount of time and treat the operation as transfer learning.
In our case, upon the addition of new 100 data, we run the training for
20% of the previously trained epochs. And finally, if the newly trained
model performs better than the previously deployed model, we simply
replace the model with the new, improved version of the model.

3.5. Setup

The machine we used for our experiments consisted of an Intel Core
i7 8700K, 32 GB DDR4 memory, Nvidia RTX 2060 (6 GB), and Kubuntu
operating system. On the software side we used both PyTorch and
TensorFlow as the deep learning frameworks and various other Python
libraries like OpenCV, Numpy, Pandas, TensorBoard, Matplotlib, etc,
for various purposes. The android application was developed using
Flutter and the cloud backend is implemented using Firebase. On the
data side, we trained the models using 256 × 256 sized images and
used a small batch size of 8 to optimize the usage of our GPU and CPU
resources.

4. Results

As previously mentioned, we used three different object detection
models to train our dataset. We split the dataset into 80:20 ratio
meaning 80% of the dataset from each class goes to the training set
and the rest 20% of the dataset goes to the validation set. We did not
explicitly create a test set due to the shortage of dataset and it did
not hamper the training process as the models never saw or used any
metrics from the validation set during the training. First, we trained our
dataset on the YOLOv5 model. The implementation of YOLOv5 comes
with various default image augmentation techniques. Initially, on our
10
first training, we turned off all the augmentation techniques, including
the mosaic augmentation, and trained the model for 100 epochs. We
trained the model on 256 × 256-sized images and kept the batch size
of 8. We figured out the epoch number based on how fast the model
converged to its optimal mAP score. After running the training for 100
epochs the YOLOv5 model achieved an mAP score of 0.80. Then we
moved to the Faster R-CNN model and kept the image and batch size
the same as before. As the training set contained 1120 images (80% of
1400) and the batch size was 8, 140 iterations were required by the
model to complete 1 epoch. Hence we trained the model for 14,000
iterations which is the same as 100 epochs and the model achieved an
mAP score of 0.78. On EfficientDet B0 we trained the model for 14,000
iterations maintaining the batch size of 8 and earned an mAP score of
0.77. Then we retrained the dataset on the YOLOv5 model turning all
of its augmentations on. We kept the same training setup as we did
on our initial training on YOLOv5. The augmentations applied to this
training contained various augmentation techniques like HSV shifting,
translation, scaling, flipping, and mosaic augmentation. We kept the
values the same as it comes on the default YOLOv5 setup. This time,
the model achieved an mAP score of 0.85, the highest among all of
these training. Table 1 compares the results of different models on the
dataset. It can be seen that YOLOv5 achieved the highest mAP among
all the models, followed by Faster R-CNN. Similar dominance of the
YOLO models is also seen across all other metrics. Though Faster R-
CNN and EfficientDet achieved better precision compared to the default
YOLOv5 model, they failed to maintain it in the case of mAP and F1
scores. The YOLOv5 that utilizes the in-built augmentation methods
outperforms all the other models by a fair margin. Some demonstrations
of our best-performed model can be seen in Fig. 11.

After training the models we deployed our best-performed YOLOv5
model into our application. We chose a popular residential area in
Dhaka to run our data collection experiments. Selected volunteers were
provided with the Android application to capture and upload images
containing visual pollutants. Our volunteers randomly captured and
uploaded the photos from various locations inside the designated area.
Users could simply launch the application, capture the image and press
the upload button to upload the image. Users could also select images
from the gallery if they ever needed to. After selecting or capturing
the image, users can see the image and then press the upload button
to upload the image to the cloud data storage. During the uploading
process, an animated loading icon is displayed to assist the users with
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p

Fig. 11. Visual pollution detection of the best-performed YOLOv5 model on some given unseen images. The model draws bounding boxes around the pollutants and classifies the
ollutants along with their confidence score.
Fig. 12. Screenshots of the android application. (a) Home page (b) The app is asking for the user’s permission to access the location (c) Image upload page.
the state of the operation. Fig. 12 illustrates the Android application
workflow.

As our volunteers completed submitting the images, we moved
on with further analyses of the collected data. We downloaded the
collected data from the Firebase on the local machine using Python
scripts. Then with the help of our previously designed method, we sent
each collected image into the model to acquire the detection results. As
the model finished generating results for all the images, we utilized the
11
newly generated information to plot the heat maps of visual pollutants
on the map. The generated heat map of visual pollutants is shown in
Fig. 13. According to the map, visual pollutants are scattered around
the residential area. Particularly, the area on the west, which is a prime
business location contains many types of visual pollutants. Although
the other parts are entirely residential areas, multiple key areas such as
Block-B, Kaji Haj Abdus Sobhan Road, are affected by almost all types
of visual pollution. From the pie chart in Fig. 14, we can see that the
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Fig. 13. The amounts of visual pollutants in a selected region is plotted on the heatmap. These are based on the pollutants detected by the trained model on the uploaded images.
Fig. 14. A pie chart visualization shows the overall distribution of the detected pollutants from the collected images on the specific region.
ashundhara residential is mainly influenced by Street Litter, followed
y Construction materials; in contrast, least impacted by billboards as
here are not any.

As for the Active Learning process, the model merged the images
long with their annotation files with the previous dataset. When
he model found less confidence score on the pollutants detection on
ertain images, the images were then stored in a buffer space for the
12
human annotator to re-validate. A web-based image annotation tool
was integrated with the system that could visualize the bounding boxes
predicted by the model and let human annotators change things accord-
ing to their choice. As the annotator validates or fixes the annotations,
the images are passed from the buffer space and merged with the
previous dataset. Upon the arrival of a certain amount of new data,
the model retrained itself with the new dataset with only 20 epochs
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which is less than its initial training. As we collected and utilized a
very low amount of new data, the newly trained model did not perform
any better than the existing one, hence the current model is kept in the
system as it is and the newly trained one is stored in another location
for future analyses.

5. Discussion

We utilized transfer learning on three popular object detection mod-
els so that they can work as visual pollutants detectors. We utilized a
dataset that contained images along with annotations of the presenting
visual pollutants in them. We also randomly split the dataset into 80:20
ratio and the same training and validation sets were used for training
and validating all the models. From our experiments, we discovered
that the YOLOv5 model outperformed the other object detection models
in the case of visual pollutants detection on the dataset. The perfor-
mance of the model also improves when the inbuilt augmentations are
applied. As it is a single-stage model, YOLOv5 is also faster during the
inference process and the deployment process is simpler compared to
the others. As our system requires model swapping at certain intervals,
the overall architecture and the usability of YOLOv5 make the overall
development and deployment process much more feasible. The Android
application is easy to use and anyone could capture and send pictures
with minimal effort. During the image submission, the user’s GPS coor-
dinates are also captured upon receiving their permission. This helped
us to plot the intensity of visual pollution in a geospatial manner. Along
with displaying a heat map of visual pollutants in a given location, the
system shows other information like a pie chart of the found pollutants.
Using such a system, associated authorities can monitor the condition
of visual pollution in a given region. This will help them to address the
issues that we often miss out as they are a kind of a hidden pollution
that we do not necessarily understand. Various organizations that work
on the study and development of urban and regional planning can
utilize our proposed system to understand and mitigate the problem
of visual pollution efficiently. In the future, a real-time video-based
analysis system can be implemented on the existing architecture of
our proposed system. In fact, the trained YOLOv5 model can already
detect visual pollutants from video feeds. A possible utilization of
such a system can be recording video feeds from vehicles and running
automatic analyses on them instead of engaging manual laborers. The
proposed system also addresses the issue of dataset generation for
problems that require more and more data to solve efficiently. As
we previously mentioned, the subject of visual pollution that utilizes
machine learning lacks work and one of the prime reasons for it is the
dataset itself. We have implemented and demonstrated a system that
can continuously handle incoming data, and with a semi-supervised
approach, the data can be merged to generate larger datasets. Also,
with the help of Incremental Learning, the model gets better day by
day by utilizing the newly collected datasets. As the model gets better
day by day, the model will be generating more and more accurate
automatic annotations of the incoming data, lowering the labor of
the human annotators. Incremental Learning also helps the model to
adapt to newly added classes in the dataset. If a new class is needed
to be added to the dataset, following various Incremental Learning
techniques the model can be retrained to learn the new class without
forgetting previously learned knowledge.

6. Conclusion

Since the industrial revolution, mankind always focused mainly on
the development of a better economic society. To achieve this, they
had to go through a lot, and engage in a lot of activities like scientific
discoveries and implementing challenging engineering concepts. We
invented better ways of transportation, better ways of communication,
and overall better ways of living. But on the way, we disrupted nature’s
order. We contaminated the water, air, and almost everything around
13
us. We are the primary cause of environmental pollution. Even though
it took a long time to understand the importance of maintaining the
proper order of nature and environment, numerous studies have been
performed in this field by now. Even complex sophisticated compu-
tational systems are regularly studied and developed to mitigate and
manage various environmental pollutants. Even though visual pollution
is a very important subject of environmental pollution management,
not much work has been done on this topic that implements mod-
ern computational algorithms like machine learning, deep learning,
etc. With the fast-growing development of machine learning-based
research and technologies, it is obvious that every sector would like
to get facilitated by such automated systems in near future. There
have been many works performed on various domains of environmental
science and its management that utilizes machine learning, but the
visual pollution domain lacks such efforts. We have tried to introduce
how machine learning concepts like object detection can be used to
automatically detect and recognize visual pollutants from our environ-
ment and how useful applications can be built regarding this. To this
extent, we experimented with three popular object detection models
and applied various useful machine-learning concepts to analyze and
build a complete system that can help authorities control and manage
visual pollution efficiently. We used an object detection dataset that
was collected and annotated using Google Street View that addresses
six different types of visual pollutants seen on streets around Dhaka
city. Among all the models, the YOLOv5 model performed the best
in detecting visual pollutants on the dataset beating Faster R-CNN
and EfficientDet. After that, we developed a system that can be used
to collect and analyze visual pollution with the help of our trained
model. We have built an android application using which volunteers or
authorities can simply capture and submit pictures that contain visual
pollutants along with their GPS location to the cloud storage and these
collected data can be downloaded and analyzed on the local machine
anytime. The trained model can infer the collected data and provide
analytics based on the detection results. These can be then plotted
on a map as a heat map to visualize a location’s condition regarding
visual pollution. Also, other important visual representations can be
generated that can aid the admins to understand the condition of a
particular region or location. Besides this, the system uses a concept
called Active Learning to re-label the newly collected dataset. With
the help of an Active Learning strategy, we have developed a semi-
autonomous data annotation system that helps the admins to annotate
new images that contain visual pollutants with minimal effort. Also to
retrain the model on regular basis with a new dataset we have applied
another concept called Incremental Learning that helps the system to
utilize both the newly added data and previously trained knowledge of
the model to build a much better one. Overall, we have gone through
how machine learning and its applications can aid us in easily detecting
and managing the visual pollutants present in our environment. It is
an issue that causes problems in this modern world every day but
is not necessarily well understood by all. We hope that our work
inspires many other researchers and scientists to utilize sophisticated
computational studies like machine learning to shape a better future
for all.
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