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Abstract. Plant diseases are the most widespread and significant hazard to 

‘Precision Agriculture’. With early detection and analysis of diseases, the 

successful yield of cultivation can be increased; therefore, this process is 

regarded as a critical event. Unfortunately, manual observation-based detection 

method is error-prone, hard, and costly. Automation in identifying plant diseases 

is extremely beneficial because it saves time and manpower. Applying a neural 

network-based solution can detect disease symptoms at an early stage and 

facilitate the process of taking preventive or reactive measures. There have been 

various deep learning-based solutions, which were developed using lengthy 

training/testing cycles with large datasets. This study aims to investigate the 

suitability of computer vision-based approaches for this purpose. A comparative 

study has been performed using recently proposed object detection models such 

as YOLOv5, YOLOX, Scaled Yolov4, and SSD. A tailored version of the 

“PlantVillage” and “PlantDoc” datasets was used in the Indian sub-continent 

context, which included plant disease classes related to Potato, Corn, and Tomato 

plants. This study provides a detailed comparison between these object detection 

models and summarizes the suitability of these models for different cases. This 

paper can be useful for prospective researchers to decide which object detection 

models could be used for a specific scenario of Plant Disease Detection. 

Keywords: Plant diseases, Machine Learning, Object Detection, YOLO, SSD, 

Comparative Study. 

1 Introduction 

Modern innovations have enabled humanity to produce food that can fill out the needs 

of the world population, but still almost 800 million people are undernourished. [1]. 

However, the food production and supply chain can still be jeopardized by a variety of 

factors such as climate change, plant illnesses, displacement of pollinators, and others. 

Besides causing a threat to food production, the consequences of diseased plants on 

small-scale farmers are a financial disaster. Small-scale farmers produce more than 

80% of the countryside generation in developing countries, and stories of abdicating 

misfortune of more than 50% due to troubles and diseases are typical [2]. The 

unsuccessful low crop yield due to diseases further worsens the nourishment level of 

small-scale farmer families, which are typically already suffering from this problem.  

Cultivation is one of the most valuable callings in countries such as Bangladesh, India, 

and Pakistan (Indian subcontinent). Most farmers in these countries, however, face 

financial crises throughout the whole term. Diseases in plants pose a significant risk to 

mailto:abu.sadi05@northsouth.edu
mailto:ziaul.hossain@ufv.ca
mailto:ashfaq.ahmed@northsouth.edu
mailto:tazin.shad@northsouth.edu


crop production and food quality. They are one of the leading sources of crop failure 

and financial loss in agribusiness [3]. Traditional agribusiness is focused on water 

management, agricultural development, and marketing. If the preceding stages are 

maximized, it may ease the financial progress of ranchers. Many crops are grown in 

these countries, and agriculturists frequently don’t know whether the picked trim is 

diseased or not. The observable proof of plant diseases is critical for maximizing the 

crop yield and calculating wages. 

 

Numerous researchers have undertaken several efforts to control the adverse effects of 

plant diseases. To prevent and control these, correctly recognizing the disease is the 

most important task, which can prove to be a difficult task that demands experience and 

skill. Ailments or their symptoms, such as colored dots or streaks, can usually be 

observed as the plant takes off. Microbes, including parasites, tiny creatures, and 

diseases, are frequently responsible for the plant’s ailments [4]. Because of the source 

or etiology of the plant ailment, there is a wide range of symptoms and side effects. In 

recent years, traditional machine-learning techniques have become popular to 

determine disease location. Deep learning, a more concise approach of machine 

learning, refers to the use of simulated neural network models with many training 

layers. As examples of conclusion-to-conclusion learning, neural systems have been 

gaining popularity in a variety of fields [5]. In a neural network, hubs are a numerical 

capacity that takes numerical inputs from the approaching edges and outputs a 

numerical yield as an active edge. The Convolutional Neural Network (CNN) may hold 

its uses in the agricultural field, counting identifiable proof of diseases as well as 

evaluating the affected zone. In farming, most of the infections are identified with just 

an observer's (farmer) eye perception. This technique entails investing a lot of time in 

enormous farms and is very exhausting. The use of convolutional neural nets in the 

early recognition and detection of plant diseases will be helpful in increasing the quality 

of products [6]. The use of a neural network to identify plant disease is tremendously 

valuable to agriculture, primarily because it saves time and workforce. It saves time 

and effort in big agricultural fields by detecting illness symptoms early on, allowing 

farmers to take the required safeguards to avert harm. 

 

Even though numerous research has been conducted on the introduction, management, 

and classification of plant disease detection, the comparison of these methods was not 

done in a conclusive manner. Moreover, the studies were conducted in the global 

context, while this study aims to focus on problems that are more common in the Indian 

sub-continent context.  This study has presented the comparison of a few of the cutting-

edge computer vision-based systems for early plant disease diagnosis which can be 

treated as a valuable resource for researchers who want to decide on which method to 

use in a particular scenario. 

 

To construct such a precise picture classifier aimed at determining plant infections, a 

large, managed, and verified dataset containing various infected and non-infected plant 

images is needed. The “PlantVillage” [7] and the “PlantDoc” [8] datasets have gathered 

thousands of plant images and made them available for free usage. The “PlantVillage” 

dataset contains thousands of images of individual plant leaves that were taken in a lab 

environment (see Fig. 1). On the other hand, the “PlantDoc” dataset contains images of 

plants that are taken in a more natural environment (see Fig. 2). In a more natural 

environment, it is expected that a single image will contain multiple target objects 

(diseased leaves), as opposed to only one target object per image that can be seen in the 

PlantVillage dataset.  In order to improve the robustness of the models, images from 

both datasets were used to investigate the performance of the different object detection 



approaches. Object detection models such as YOLOv5 [21], Scaled YOLOv4 [11], and 

SSD [12] have been used in a comparative manner. A customized version of the 

“PlantVillage” and “PlantDoc” datasets has been used, which included plant disease 

classes more relevant to the settings of Bangladesh, India, and Pakistan.  In this 

experiment, an attempt was made to detect some common diseases for three types of 

crops – tomato, corn, and potato. These three types of crops a prevalent in the Indian 

sub-continent, hence making them suitable for this study. A subset of images was 

chosen from both datasets to create the new customized dataset. 

 

The two primary contributions of this study are – 1) A customized dataset containing 

images from both lab and natural environments was used to train the models, improving 

models' capability to detect diseases in more diverse settings, and 2) A comparative 

study was performed on plants and diseases that are prevalently found in the Indian 

sub-continent. The aim is to provide future researchers of this region with important 

information on which object detection model they could use for their own research 

purposes. 

 

Section 2 presents some object detection-based models, their background, their 

evolution from the deep learning studies, and relevant comparison studies. Next, in 

Section 3, the experimental methodology is explained with a few details of the tested 

detection models. After that, the criteria on which the comparison was formulated, in 

other words, the evaluation metrics, is presented in Section 4. Sections 5 and 6 contain 

the experimental setup details, observed outcomes, and a discussion on the observation. 

Section 7 briefly discusses some of the limitations of this study. Finally, the findings 

and contents of the paper are concluded in Section 8. 

 

2 Related Works 

2.1 Deep Learning and Plant Diseases 

Plant disease detection has advanced fast, thanks to the advances in image processing 

and deep learning. Plant disease detection and diagnostic technologies currently focus 

on plant disease classification, detection, and recognition of plant species. Many 

researchers have developed different techniques based on deep learning for classifying 

and detecting plant diseases. 

 

In paper [13], Anjanadevi B et al. proposed an improved model for plant disease 

detection. Both the PlantVillage and PlantDoc datasets were used in this study. The 

outcomes of the experiments were compared to architectures such as Mobile Net, Dark 

Net-19, and ResNet-101. This proposed approach is more precise in terms of both 

localization and categorization. In their paper [14], Sk Mahmudul Hassan et al. used 

different deep convolutional neural network (CNN) models for the classification of 

plant diseases. The performance of these models was assessed using different 

parameters like batch size, epochs, etc. Models such as InceptionV3, 

InceptionResNetV2, MobileNetV2, and EfficientNetB0, respectively yielded the 

accuracy rates of 98.42%, 99.11%, 97.02%, and 99.56%. In paper [15], Shao Xiang et 

al. presented a lightweight convolutional neural network (CNN) for the identification 

of plant disease severity. This lightweight CNN model managed to achieve an accuracy 

rate of 90.6% on the Plant Disease Severity dataset and 97.9% on the PlantVillage 

dataset. 



 

In their work [16], Kakade et al. suggested a new technique that uses neural network-

based classification and image processing to identify and categorize illnesses in leaves. 

Their goal was to detect and adequately assess the early signs of diseases. They were 

able to detect and classify diseases with 92.94% accuracy. For the identification of 

diseases and pests in tomato plants, in paper [17], Fuentes et al. suggested an effective 

deep-learning-based technique. As deep learning meta-architectures, they utilized 

Faster R-CNN, R-FCN, and SSD and integrated all of them with VGG net and ResNet 

used for feature extraction. Their technology was able to distinguish between nine 

distinct illnesses and pests. In their study [18], Sharada P. Mohanty et al. used the public 

PlantVillage dataset for classification. The proposed deep CNN managed to yield up to 

a correctness of 99.35% on the test set. 

 

2.2 YOLO (You Only Look Once) 

In 2015, Joseph Redmon et al. introduced YOLO [19], a novel object detection 

methodology. Objects in the image were previously localized using areas in previous 

detection techniques. On the other hand, YOLO examines the whole picture and finds 

and locates the object. YOLO can recognize numerous classes in a photo at the same 

time. YOLO is a model that is exceptionally quick and useful for object detection. Many 

other versions of YOLO have been released throughout the years since its first release. 

Some mentionable updates are YOLOv3 [20] by Joseph Redmond himself, and 

YOLOv5 [21] by a company Ultralytics and YOLOX [10].  

 

Throughout the years, YOLO has been included in several different research works 

related to plant disease detection. For example, in their study [9], the authors proposed 

a version of YOLOv5 for detection. They applied different techniques to reduce the 

number of parameters and calculations. The loss function was also updated from 

’Generalized Intersection over Union’ to ’Efficient Intersection over Union’. In the end, 

they managed to achieve a 5.4% higher mAP score than the base YOLOv5 model. In 

paper [22], Achyut Morbekar et al. presented a system that uses the object detection 

model YOLOv3 for detecting plant diseases. Images from the PlantVillage dataset were 

used for this study. In paper [23], Vijayakumar Ponnusamy et al. presented a wearable 

device that uses the YOLOv3 model to detect damaged plant leaves in real-time. 

 

In this study, two of the recent versions of YOLO are used. They are YOLOv5 and 

Scaled YOLOv4. 

 

2.3 SSD (Single Shot Multi-Box Detector) 

Wei Liu [12], together with others, presented SSD: Single Shot Multi-Box in 2016 - a 

method that detects objects in pictures employing a single deep neural network. In this 

method, a set of default boxes is discretized from the yield space of bounding boxes. 

The set ranges over diverse aspect proportions and scales per feature map area. During 

prediction, the presence of each object category in each default box is given scores and 

produces alterations to the box to superior coordinate the object shape. Furthermore, 

the arrangement combines predictions from different feature maps with diverse 

resolutions to handle objects of different sizes. SSD is straightforward relative to other 

strategies that require object recommendations in several terms. Firstly, it dispenses 

fully with the proposition era and highlights resampling stages after ensuing pixels. 

Also, it typifies all computation into a single organization. As a result, SSD becomes 

simpler to train and direct to coordinate into frameworks in requirement of a detection 

component. 



 

2.4 Comparative Study on Object Detection Models 

In their paper [24], Vu Thanh Nguyen et al. conducted a comparison of several 

objection models for detecting plant leaf disease. YOLOv3, RetinaNet, Faster RCNN, 

and Mask RCNN were the models employed in this research. The findings suggest that 

YOLO is the fastest approach for data processing but has a low mAP of 60.5%. Mask 

RCNN has the highest mAP of 82.9%, but it takes the longest to process. To balance 

the speed, time, and resources required, YOLO is the ideal option for developing 

applications. In [25], Min Li et al. conducted a study of comparison between Faster R-

CNN, YOLOv3, and SSD models for the detection of Agricultural Greenhouses (AGs). 

Considering the mean average precision (mAP) and frames per second (FPS) metrics, 

YOLOv3 delivered the most significant results in terms of accuracy and efficiency. The 

SSD outperformed the Faster R-CNN in detection speed, with an FPS twice as high, 

despite the mAP being similar on the test set. The authors concluded that YOLOv3 was 

superior in both accuracy and computing efficiency. 

 

In their work [26], Jeong-ah Kim et al. performed a study that compares the 

performance of Faster-RCNN, YOLOv4, and SSD on an automobile training dataset. 

The YOLOv4 model outperformed the other two techniques, reaching a 93% accuracy 

rate in detecting vehicle models. In [27], R Deepa et al. performed a comparative study 

on the object detection algorithms YOLO, SSD, and Faster RCNN for real- time tennis 

ball tracking. The SSD model outperformed the other two models in the research, 

according to the authors. While performing the job of tennis ball tracking, the SSD 

model exhibited less processing time, more accuracy, and efficiency. In [28], Mohamed 

Lamine Mekhalf et al. performed a comparison between the detection models named 

Detection Transformers (DETR), YOLOv5, and EfficientDet for the purpose of crop 

circle detection. In conclusion, the authors agreed that DETR has restricted 

performance while object detection was more accurate through YOLOv5.  

 

2.5 Limitations of Earlier Studies 

A lot of the studies mentioned above used images from a single dataset to train their 

models [14, 18, 22, 24]. While training on a single dataset such as the PlantVillage 

dataset might result in models with higher accuracies, the lack of diversity in the 

training data could cause the models to fail in real-world settings. All the images present 

in the PlantVillage dataset are close-up images of plant leaves taken in a lab 

environment. In order to address this issue, this study combines images from both the 

PlantVillage and PlantDoc datasets to create a custom dataset. The images from the 

PlantDoc dataset are taken in more diverse real-world environments. Additionally, this 

study performs experiments with plant diseases that are common occurrences in the 

Indian sub-continent, providing future researchers with valuable information regarding 

which detection model to utilize under similar circumstances. 

 

3 Proposed Methodology 

3.1 Datasets 

Data on agricultural issues is difficult to come by, and real-time photos are a key 

concern. Deep learning in the field of agriculture has not progressed as quickly as in 

other fields due to a lack of available data. One of the main reasons for this is that there 



aren’t enough publicly available agricultural datasets. The most popular public dataset 

available is the ‘PlantVillage’ dataset. The ‘PlantVillage’ dataset contains over 54000 

images of individual plant leaves (see Fig. 1). There are 14 different crop species with 

26 different diseases present in the dataset.  

 

 

Fig. 1. Images from PlantVillage Dataset 

The dataset contains pictures of individual leaves that were taken in a controlled 

environment with a gray or black background. Even though the photos in the plant 

village collection are very useful for disease classification, they are not ideal for 

detection because each image only comprises a single leaf. 

 

Another publicly available dataset is the ‘PlantDoc’ dataset. This dataset was created 

specifically for the purpose of detecting plant diseases (see Fig. 2). There are 2,598 

photos in total in the dataset, which span 13 plant species and up to 17 disease groups. 

All the images in this dataset represent real-life scenarios. 

 

For this study, it was decided to take images from both the PlantVillage and PlantDoc 

datasets. However, all the images and classes present in both datasets were not used. 

Instead, a total of 3154 photos from the disease categories that are relevant to this 

research were chosen. 

 

The custom dataset contained images of 3 plant species: Corn, Potato, and Tomato. 

There was a total of 8 diseased leaf classes and 3 healthy leaf classes. The names of 

these 11 classes are given in Table. 1. 

Table 1. Classes Present in the Custom Dataset 

Corn Diseases Potato Diseases Tomato Diseases 

Common Rust Early Blight Bacterial Spot Healthy 

Healthy Healthy Early Blight Mosaic Virus 

Northern Leaf Blight Late Blight Late Blight  

 
 



 

Fig. 2. Images from PlantDoc Dataset 

 

For training all the models, we divided our dataset into two sets, the training set, and 

the validation set. The training and validation set ratio was 80:20. So, there were a total 

of 2524 training images and 630 validation images. 

 

3.2 Annotations 

Annotation is a fundamental step in computer vision research that involves assigning 

labels or identifiers to objects represented in images in order to train and evaluate 

detection models. Images must be annotated carefully and correctly because the 

detection model's accuracy is dependent on it. One of the most popular methods of 

annotation is to draw rectangular bounding boxes around the objects of interest within 

the image, thereby informing the model about the exact location of an object inside the 

picture. However, alternative image annotation techniques like segmentation, 

landmarking, lines and splines, and so on are also available. In the context of this study, 

the bounding box annotation technique was used to manually annotate the images 

within the dataset. The task was performed using the open-source annotation tool called 

CVAT (Computer Vision Annotation Tool) [29]. 

 

3.3 YOLO (You Only Look Once) 

YOLO is a one-stage detector and one of the most well-known and state-of-the-art 

object detectors to date. The initial version of YOLO was introduced by Redmond et 

al. in 2015[19], and it was regarded as a breakthrough in real-time object recognition. 

Object detection models like R-CNN, applied region proposal techniques to build 

potential bounding boxes in an image before running a classifier on them. The model 

would then modify the bounding boxes and eliminate duplicates after classification. 

Although these frameworks have had a lot of success, this multi-stage approach 

introduced complexity and computational inefficiencies. In contrast, YOLO simplifies 

the object detection task by approaching it as a regression problem and combining all 

essential components in a single framework. This simplified approach significantly 

accelerates inference, as it eliminates the need for multiple processing stages. 

 



The YOLO algorithm resizes images to the same size and divides them into a S x S grid 

(see Fig. 3). When an object’s center falls inside a grid cell, that grid cell is tasked with 

the detection of the object. Bounding boxes and the confidence ratings for those boxes 

are predicted in each grid cell. There are five predictions in each bounding box: x, y, 

w, h, and confidence. However, there might be several boxes for the same object. In 

this scenario, the bounding box with the highest confidence rating is selected by the 

model by applying Non-Maximum Suppression (NMS), which eliminates any 

duplicate bounding boxes. 

 

Fig. 3. The Object Detection Stages of YOLO 

 

The confidence score of the bounding box is the IoU (Intersection Over Union) between 

the predicted box and any ground truth box. IoU is calculated by the equation shown in 

Fig. 4. 

 

Fig. 4. IoU 

 

The original version of YOLO experienced some generalization and localization 

problems when the objects in the image were too small, or the image had varied 

dimensions. The second version of YOLO tried to reduce these errors by introducing 

new features such as batch normalization and anchor boxes. For bounding box 

prediction, all fully connected layers are replaced by anchor boxes which makes the 

entire model a fully convolutional network. The increase in detection accuracy was one 

of the main goals of YOLOv3. A variation of Darknet-53 with 106 layers is used in 



YOLOv3. Several techniques were also included, including skip connections, residual 

blocks, and up-sampling. These improved the performance of the model with small 

objects significantly. It does, however, come with a higher processing cost. 

 

For YOLOv4, CSPDarknet53 serves as the backbone. CSP- Darknet53 also includes a 

spatial pyramid pooling algorithm to increase the receptive field and differentiate 

contextual information. Another notable aspect of YOLOv4 is its ability to run training 

on a single GPU. YOLOv5 is one of the most recent versions of YOLO. CSPNet is 

used as a backbone for this version. YOLOv5’s key features include its user-

friendliness, speed, performance, and ease of use. It has five different variants nano, 

small, medium, large, and Xlarge. 

 

For this study, three different YOLO models will be utilized. These models include: 
 

YOLOv5s. YOLOv5 offers multiple different variations of pre-trained models. 

YOLOv5s is one of the smallest and fastest models in the YOLOv5 family. Since the 

custom dataset used in this study is relatively small, the training process was initiated 

using pre-trained weights. These pre-trained weights are provided with the YOLOv5 

model. 
 

YOLOv5x. YOLOv5x is the largest variant in the YOLOv5 family. This model is 

supposed to produce better results in nearly all cases. But the tradeoff of this model is 

it takes longer to train and requires a lot of CUDA memory to train. Here, pre-trained 

weights were also used to initiate the training process. 
 

Scaled YOLOv4. Scaled YOLOv4 was proposed by Chien-Yao Wang and others in 

2020[11]. This model improves the YOLOv4 model by scaling the network’s design 

and scale with efficiency. This model presents a network scaling strategy that alters not 

just the network’s depth (number of convolutional layers in a CNN), width (number of 

convolutional filters in a convolutional layer), and resolution, but also its structure. For 

this study, the Scaled YOLOv4 model was used which scales the YOLOv4-large model. 

Training the Scaled YOLOv4 model is very resource-expensive as it scales the large 

YOLOv4 model. 

 

 

3.4 SSD 

As it moves through the neural network, the YOLO feature map's final stage has only 

brief information, which could restrict its accuracy. To address this shortcoming in 

YOLO, SSD takes a different approach by utilizing the convolutional feature map at 

the beginning, resulting in more detailed highlights. Furthermore, using the Faster R-

CNN anchor concept, different sizes of objects may be detected. In each feature map, 

the SSD computation generates a default box with a specific proportion and scale. It 

constructs the final bounding box by applying the model’s predicted coordinates and 

class values to the default box. Various feature maps can be used to generate predictions 

of differing sizes.  

 

The SSD architecture employs a complex neural network. These neural networks rely 

on loss functions to learn effectively. In this case, there are two types of loss functions 

at play: confidence loss and location loss. Confidence loss assesses the algorithm's 

confidence in identifying whether an image's bounding boxes contain certain objects or 

classes. Location loss quantifies the difference between the network's predicted 

bounding boxes and the actual ground truth values used for training the computer. An 



alpha term is used to balance the influence of location loss. The final loss is represented 

by the following formula- 

 

MultiBox Loss = confidence loss + alpha * location loss 

4 Evaluation Metrics 

4.1 Precision and Recall 

True Positive (TP) refers to a collection of positive attributes that are correctly 

recognized as positive attributes. In contrast, True Negative (TN) refers to a collection 

of negative attributes that are accurately recognized as negative. False Positives (FP) 

are negative attributes but are predicted as positive. Similarly, False Negatives (FN) are 

positive attributes but are predicted as negative. 

 

Precision represents the proportion of correct positive predictions among all positive 

predictions. The True Positive (TP) and False Positive (FP) values are used to calculate 

precision (see Fig. 5).  

 

Fig. 5. Precision and Recall 

For example, when the model has a precision score of 0.947 for “Potato Late Blight,” 

it means that when the model predicts a disease as “Potato Late Blight,” it is correct 

94% of the time. On the other hand, recall evaluates what proportion of actual positives 

are predicted correctly by the model. The True Positive (TP) and the False Negative 

(FN) values are used to calculate recall (see Fig. 5). For example, when the model has 

a recall score of 0.90 for “Potato Late Blight,” it means that when the model predicts a 

disease as “Potato Late Blight”, it correctly predicts 90% of all the "Potato Late Blight" 

samples present in the dataset. 

 

4.2 Mean Average Precision (mAP) 

The metric "Mean Average Precision" (mAP) is frequently used for evaluating how 

effectively object detection algorithms perform. A higher mAP value indicates better 

performance of the model. The mAP score is calculated by taking the mean of the 

Average Precision (AP) values across all classes present in the dataset. AP is calculated 

for each class by computing the precision-recall curve and then calculating the area 

under the curve (AUC). For this study, the precision-recall values were derived using 

the IoU (see Fig. 4) threshold value of 0.5. 

 

4.3 Experimental Setup 

The test setup included an Intel Center i7 7700K processor, 16 GB of DDR4 memory, 

an 8GB Nvidia GTX 1070 graphics card, and a Windows 10 operating system. The 



Pytorch framework was utilized for training the object detection model. Additionally, 

the CVAT [29] annotation tool was utilized for performing data annotations. 

 

5 Results 

5.1 YOLO 

In order to train the YOLOv5 model, transfer learning was employed. The developers 

of YOLOv5 recommended the use of pre-trained weights, especially when dealing with 

a relatively small dataset. Consequently, pre-trained weights were utilized for both the 

YOLOv5s and YOLOv5x models. However, in the case of training the Scaled 

YOLOv4, pre-trained weights were not employed, as Scaled YOLOv4 does not provide 

pre-trained weights out of the box like YOLOv5. As a result, the Scaled YOLOv4 

model was trained from scratch. Table. 2, contains the training parameters that were 

kept consistent during the training of the YOLO models. 

Table 2. Training Parameters 

Parameter Value 

Batch Size 8 

Epochs 50 

Image Size 256x256 

 

YOLOv5s. On the YOLOv5s model, the best mAP (Mean Average Precision) score 

achieved on the custom dataset was 0.932. The training process was completed in 

approximately 29 minutes. Detailed mAP, precision, and recall scores are shown in 

Table. 3 and Fig. 6. Furthermore, the final mAP scores for each specific class are shown 

in Table. 6. 

Table 3. YOLOv5-S Results 

Epochs Precision Recall Best mAP 

0-9 0.788 0.791 0.835 

10-19 0.896 0.813 0.911 

20-29 0.899 0.870 0.927 

30-39 0.893 0.860 0.929 

40-49 0.937 0.857 0.932 

 

 

Fig. 6. Precision, Recall and mAP curves obtained from YOLOv5-S 



 

YOLOv5x. On the YOLOv5x model, the best mAP (Mean Average Precision) score 

attained for the custom dataset was 0.941. The training process was completed in 

approximately 137 minutes. Detailed mAP, precision, and recall scores are shown in 

Table. 4 and Fig. 7. Additionally, Table. 6 showcases the final mAP scores for each 

specific class. 

Table 4. YOLOv5-X Results 

Epochs Precision Recall Best mAP 

0-9 0.867 0.845 0.896 

10-19 0.898 0.851 0.919 

20-29 0.915 0.869 0.931 

30-39 0.901 0.894 0.937 

40-49 0.936 0.889 0.941 

 

 

Fig. 7. Precision, Recall and mAP curves obtained from YOLOv5-X 

 

Scaled YOLOv4. On the Scaled YOLOv4 model, the best mAP (Mean Average 

Precision) score of 0.643 was obtained after 50 epochs of training. The training process 

took approximately 87 minutes. Detailed mAP, precision, and recall scores are given 

in Table. 5 and Fig. 8. However, this model did not provide the final mAP scores for 

each class. 

 
 

Table 5. Scaled YOLOv4 Results 

Epochs Precision Recall Best mAP 

0-9 0.198 0.657 0.282 

10-19 0.233 0.759 0.440 

20-29 0.265 0.764 0.498 

30-39 0.276 0.784 0.596 

40-49 0.306 0.797 0.643 

 



 

Fig. 8. Precision, Recall and mAP curves obtained from Scaled YOLOv4 

 

5.2 SSD 

The same training parameters as those provided in Table. 2 were used to train the SSD 

model. The best mAP (Mean Average Precision) score achieved during the training 

process was 0.905. The training process took approximately 160 minutes to complete. 

Detailed mAP scores are shown in Table. 6. 
 

Table 6. Detailed mAP Scores of YOLOv5-S, YOLOv5-X, and SSD  

Class YOLOv5-S YOLOv5-X SSD 

all 0.932 0.941 0.905 

Corn Common Rust 0.970 0.958 0.899 

Corn Healthy 0.971 0.975 0.909 

Corn Northern Blight 0.887 0.877 0.902 

Potato Early Blight 0.918 0.920 0.905 

Potato Healthy 0.995 0.995 0.909 

Potato Late Blight 0.912 0.941 0.904 

Tomato Bacterial Spot 0.994 0.995 0.986 

Tomato Early Blight 0.756 0.855 0.897 

Tomato Healthy 0.930 0.935 0.906 

Tomato Late Blight 0.899 0.905 0.897 

Tomato Mosaic Virus 0.995 0.995 0.909 

6 Result Analysis and Discussion 

Out of the three models of YOLO, YOLOv5s had the fastest training time of 

approximately 29 minutes (see Table. 7). This was expected as it is the smallest model 

out of the three. On the other hand, the YOLOv5x was the largest model out of the 

three. Consequently, it required more CUDA memory and was slower to train. The 

YOLOv5x model took the longest time to train, taking about 137 minutes (see Table. 

7). Scaled YOLOv4 also took a fairly long time to train, approximately 87 minutes (see 

Table. 7). Comparing the mAP scores, we found that both YOLOv5s and YOLOv5x 

had almost similar mAP scores. Even Though YOLOv5x is a very large model 

compared to YOLOv5s, it only produced a 0.01 higher mAP value than the small 

model, equivalent to an improvement of 1%. Multiple factors could have influenced 

such close results, such as the size of the dataset, the size of the images, and the training 

environment. Smaller models tend to perform more efficiently on smaller datasets than 



larger models. The relatively small size of the custom dataset used in this study could 

have been one of the reasons why the small model performed so well. 

 

In contrast to the YOLOv5 models, the Scaled YOLOv4 model yielded a relatively 

lower mAP score of 0.643. However, it can be observed from Table. 5 and Fig. 8 that 

the mAP score continued to show significant improvement even in the final ten epochs 

of training. This trend of improvement indicates that if the model had been trained for 

a longer amount of time by increasing the number of epochs, then the model could have 

achieved better results. A primary factor behind the slow training of the Scaled 

YOLOv4 model was the absence of pre-trained weights. This model does not provide 

readily available pre-trained weights like the YOLOv5 models. As a result, the model 

had to be trained from scratch, which extended the training time required for achieving 

the optimal mAP score. 

Table 7. Comparison of models based on the mAP score and training time 

Model Best mAP Training Time (in minutes) 

YOLOv5-Small 0.932 29 

YOLOv5-Xlarge 0.941 137 

Scaled YOLOv4 0.643 87 

SSD 0.905 160 

 

On the other hand, the SSD model utilizes a VGG backbone, making it a large and 

strong model. Despite its strength, the SSD model achieved a lower mAP score than 

the other YOLO models. It also took the longest time to train, approximately 160 

minutes (see Table. 7). After training for 50 epochs, the SSD model did not demonstrate 

any significant increase in the mAP score. The likely explanation for this is that the 

SSD model has some limitations when it comes to identifying small items effectively 

[30]. Given that plant the diseases present in plant leaves are usually smaller in nature, 

the model could have struggled to detect them accurately. Additionally, the SSD model 

had higher computational costs than the other three models, resulting in significant 

CPU, GPU, and RAM usage during the training phase. 

 

Finally, some sample test images that weren't part of the training or validation sets were 

used to test the models. The trained models exhibited strong performance in accurately 

identifying the type of leaf diseases as well as the specific leaf type in most cases. 

However, in certain instances, the models did face some challenges in correctly 

identifying the type of leaf. For example, in Fig. 9, the image on the left is of the given 

label, and the image on the right is the prediction of the model. It can be seen that the 

model correctly identified the type of disease as "Early Blight." However, it mislabeled 

the leaf type as Potato leaf instead of Tomato leaf. Overall, aside from these minor 

flaws, the models did a great job at detecting plant illnesses. Fig. 10 contains images of 

some of the successful predictions of the YOLOv5-X model on test images. From the 

figure, it can be seen that the model was successful at detecting diseased leaves from 

the test images taken in both lab (PlantVillage) and natural (PlantDoc) environments. 

Therefore, the use of the custom dataset did help the model with generalization and 

improved its capability to detect diseases from images taken in diverse settings. 

 



 

Fig. 9. Ground Truth (left) vs Predicted Result (Right) 

 

7 Limitations 

One of the main limitations of this research is the imbalance between the number of lab 

images (PlantVillage) and real-world images (PlantDoc) present in the custom dataset. 

The PlantDoc dataset has significantly less number of pictures when compared to the 

PlantVillage dataset. As a result, the custom dataset also contained a very high amount 

of pictures that were taken from the PlantVillage dataset. However, even with this 

imbalance present in the dataset, the models trained on the custom dataset were able to 

successfully detect diseased leaves on the test images that contained multiple target 

objects. Therefore, in the future, researchers need to focus on developing large plant 

disease datasets that contain high-quality images taken in real-world environments and 

that are more suitable for the task of object detection. Alternatively, sampling 

techniques such as undersampling and oversampling could be used to address the 

imbalance problem. 

8 Conclusion 

Early and accurate disease detection in plants is a pivotal task in the cultivation process 

to ensure a sustainable food supply chain. There are several research works in this 

domain. However, a comparison of these methods in the Indian sub-continent 

agriculture context was missing. This study evaluated the performance of various object 

detection models and their variations in the context of plant disease recognition, 

considering elements like training speed and accuracy. The results presented in this 

study are not only applicable to the region of the Indian sub-continent but also 

meaningful to understand the performance comparison in a broader concept. 



 

 

 
Fig. 10. Successful predictions on test images 



The results showed that the YOLOv5 model was more reliable for the task of plant 

disease detection due to its lightweight and effective architecture. In contrast, despite 

the SSD model's decent mAP score, its heavy VGG-16 backbone has rendered this 

approach to be less advantageous in terms of training time and computational cost. Even 

the largest YOLOv5 model had more accuracy and less training time than SSD. 

Additionally, the small YOLOv5s model performed surprisingly well, almost matching 

the performance of the larger YOLOv5x model. However, another variant of YOLO, 

the Scaled YOLOv4, did not demonstrate a decent performance compared to the other 

models. The primary contributing factor was the absence of pre-trained weights for this 

model. Given the relatively small dataset used, the use of pre-trained weights played a 

huge role in enhancing model performance. In summary, YOLOv5x emerged as the 

most accurate among the four models examined, while YOLOv5s proved to be the 

fastest in terms of training speed. 

 

The outcomes of this study will offer valuable insights to future researchers in 

determining which object detection model to utilize for plant disease detection. The 

decision largely depends on the user's particular needs. If speed is the most important 

factor, YOLOv5s is the ideal choice. On the other hand, YOLOv5x is the best option 

for those who seek higher accuracy. The dataset should also be considered while 

making a choice, as smaller models tend to perform well with smaller datasets, as 

evidenced by the nearly equivalent performance of YOLOv5s when compared to 

YOLOv5x. Transfer learning should also be considered for smaller datasets to achieve 

optimal results. 
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